This page shows a basic exploration of iris data with R. Check the dimensionality > dim(iris) [1] 150 5 Variable names or column names > names(iris) [1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species" Structure > str(iris) 'data.frame': 150 obs. of 5 variables: $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ... $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ... $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ... $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ... $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ... Attributes > attributes(iris) $names [1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species" $row.names [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 [21] 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 [41] 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 [61] 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 [81] 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 [101] 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 [121] 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 [141] 141 142 143 144 145 146 147 148 149 150 $class [1] "data.frame" Get the first 5 rows > iris[1:5,] Sepal.Length Sepal.Width Petal.Length Petal.Width Species 1 5.1 3.5 1.4 0.2 setosa 2 4.9 3.0 1.4 0.2 setosa 3 4.7 3.2 1.3 0.2 setosa 4 4.6 3.1 1.5 0.2 setosa 5 5.0 3.6 1.4 0.2 setosa Get Sepal.Length of the first 10 rows > iris[1:10, "Sepal.Length"] [1] 5.1 4.9 4.7 4.6 5.0 5.4 4.6 5.0 4.4 4.9 Same as above > iris$Sepal.Length[1:10] [1] 5.1 4.9 4.7 4.6 5.0 5.4 4.6 5.0 4.4 4.9 Distribution of every variable > summary(iris) Sepal.Length Sepal.Width Petal.Length Petal.Width Species Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100 setosa :50 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300 versicolor:50 Median :5.800 Median :3.000 Median :4.350 Median :1.300 virginica :50 Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800 Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500 Frequency > table(iris$Species) setosa versicolor virginica 50 50 50 Pie chart > pie(table(iris$Species)) Variance of Sepal.Length > var(iris$Sepal.Length) [1] 0.6856935 Covariance of two variables >
cov(iris$Sepal.Length, iris$Petal.Length) [1] 1.274315 Correlation of two variables > cor(iris$Sepal.Length,
iris$Petal.Length) [1]
0.8717538 Histogram >
hist(iris$Sepal.Length) Density > plot(density(iris$Sepal.Length)) Scatter plot > plot(iris$Sepal.Length,
iris$Sepal.Width) Pair plot > plot(iris) or > pairs(iris) More examples on data exploration with R and other data mining techniques can be found in my book "R and Data Mining: Examples and Case Studies", which is downloadable as a .PDF file at the link. |
Examples >