Examples‎ > ‎

    Decision Trees

    This page shows how to build a decision tree with R.
    > library("party")

    > str(iris)
    'data.frame':   150 obs. of  5 variables:
     $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
     $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
     $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
     $ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
     $ Species     : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...


    Call function ctree to build a decision tree. The first parameter is a formula, which defines a target variable and a list of independent variables.
    > iris_ctree <- ctree(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width, data=iris)

    > print(iris_ctree)

             Conditional inference tree with 4 terminal nodes

    Response:  Species
    Inputs:  Sepal.Length, Sepal.Width, Petal.Length, Petal.Width
    Number of observations:  150

    1) Petal.Length <= 1.9; criterion = 1, statistic = 140.264
      2)*  weights = 50
    1) Petal.Length > 1.9
      3) Petal.Width <= 1.7; criterion = 1, statistic = 67.894
        4) Petal.Length <= 4.8; criterion = 0.999, statistic = 13.865
          5)*  weights = 46
        4) Petal.Length > 4.8
          6)*  weights = 8
      3) Petal.Width > 1.7
        7)*  weights = 46

    > plot(iris_ctree)




    > plot(iris_ctree, type="simple")

    More examples on decision trees with R and other data mining techniques can be found in my book "R and Data Mining: Examples and Case Studies", which is downloadable as a .PDF file at the link.